Development of a Robust Framework for Real-time Hybrid Simulation: from Dynamical System, Motion Control to Experimental Error Verification
نویسندگان
چکیده
Gao, Xiuyu. Ph.D., Purdue University, December 2012. Development of a Robust Framework for Real-time Hybrid Simulation: from Dynamical System, Motion Control to Experimental Error Verification. Major Professor: Shirley Dyke. Real time hybrid simulation (RTHS) has increasingly been recognized as a powerful methodology to evaluate structural components and systems under realistic operating conditions. The idea is to explore and combine the advantages of numerical analysis with physical lab testing. Furthermore, the enforced real-time condition allows testing on ratedependent components. Although the concept is very attractive, challenges do exist that require an improved understanding of the methodology. One of the most important challenges in RTHS is to achieve synchronized boundary conditions between the computational and physical substructures. Test stability and accuracy are largely governed by the level of synchronization. The sensitivity of the RTHS system error to the de-synchronization error is analyzed, from which a worst-case substructure scheme is identified and verified experimentally. This de-synchronization error, which is largely associated with the actuator dynamics, is further analyzed, by studying the sensitivity of the actuator dynamics with respect to the actuator parameter variation.
منابع مشابه
Control Simulation and Experimental Verification of Maximum Power Point Tracking Based on RT-LAB (TECHNICAL NOTE)
The maximum power point tracking (MPPT) control in the Photovoltaic system is the key control technology, however present controller has the disadvantages of long development cycle, high cost and complex verification, and there are some disadvantages carrying out totally physical simulation or totally digital simulation of different control algorithms. This paper carried out design of hardware ...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملRobust Hybrid Motion Force Control Algorithm for Robot Manipulators
In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...
متن کاملFuzzy Motion Control for Wheeled Mobile Robots in Real-Time
Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کامل